
Analyzing Malicious Documents – v1.0

Josh Stroschein | The Cyber Yeti @jstrosch

Office Files Versions

Office 97-2003 documents use OLE (object
linking and embedding) compound binary
file format.

These files have a signature of
0xD0CF11E0A1B11AE1, which appears as
“DOCFILE”.

These files are still compatible with the
latest versions of Office.

OLE file format was replaced in Office
2007 with Office Open XML (OOXML).

OOXML is a ZIP archive that uses XML-
based files to represent document
structure.

Macros are stored inside OLE2 files and
in vbaProject.bin in OOXML.

OneNote files can not contain macros
without 3rd party extensions. Often
contain embedded objects, such as scripts
and executables.

PDF files can contain JavaScript to
execute code.

RTF documents do not contain macros but
can be opened by Word and may be used in
exploitation.

Common File Types & Extensions

Word 97-2003 .doc, .dot

Word (OOXML)
.docm, .docx, .dotm,
.dotx, .rtf

Excel 97-2003 .xls, .xlt, .xlm

Excel (OOXML)
.xlsx, .xlsm, .xltx,
.xltm

PowerPoint
97-2003

.ppt, .pot, .pps,

.ppa

PowerPoint
(OOXML)

.pptx, .pptm, .potx,

.potm, .ppam, .ppsx,

.ppsm, .sldx, .sldm,

.ppam

OneNote .one

Publisher .pub

Portable Document
Format (PDF)

.pdf

oledump Use Cases

Python tool designed by Didier Stevens to analyze OLE (Compound Binary Files). Primary
file types are Microsoft Office.

Basic usage:
 oledump.py [options] file

First command to run on new sample:

oledump maldoc.docm

A: word\vbaProject.bin

A1: 487 ‘PROJECT’

A2: 71 ‘PROJECTwm’

A3: M 1053 ‘VBA/NewMacros’

A4: M 6073 ‘VBA/ThisDocument’

A5: 3667 ‘VBA/_VBA_PROJECT’

A6: 1089 ‘VBA/__SRP_0’

A7: 70 ‘VBA/__SRP_1’

A8: 84 ‘VBA/__SRP_2’

A9: 103 ‘VBA/__SRP_3’

A10: 575 ‘VBA/dir’

vbaProject.bin indicates OOXLM document with macro code.

First column A# indicates the stream number, this value can vary in format.

Second column indicates stream type. Uppercase M indicates a macro stream with macro
content. These are typically the most interesting.

m (lowercase) indicates a macro stream without macro content. This are often found with
documents that contain forms.

Other indicator types include:

- E: corrupt
- !: unusual VBA code
- O: embedded object
- .: storage
- R: root entry

Third column represents stream size.

Fourth column represents stream name.

To inspect macros, use the -s argument to identify stream number and -v to decompress
macro stream:

oledump -s A3 -v maldoc.docm

This will dump macro content to the terminal, consider redirecting with > to a file for
further inspection.

Use a as the stream index to dump all macro streams.

Use Yara rules to scan a document:

oledump -y yara.rule maldoc.docm

Output will show if Yara rule matched the VBA code.

To use a plugin, use the -p argument.

Oledump -p plugin_vba_summary maldoc.docm

Analyzing Malicious Documents – v1.0

Josh Stroschein | The Cyber Yeti @jstrosch

olevba Use Cases

Script to parse OLE and OOXML files to
extract and analyze VBA code. Also
supports XLM/Excel 4 macros.
 olevba [options] file file2 …

First command to run on a sample:

olevba file

Output will include macro code and a
summary table w/ helpful indicators.

Summary table will include Type, Keyword
and Description.

Indicators will be highlighted in macro
code above summary table; this helps
identify suspicious code segments.

If obfuscated strings are suspected, try -
-decode. For obsucated code, try --reveal.

Excel 4.0 / XLM

Introduced in 1992 by Microsoft, were
disabled by default in 2022 after an
uptick in abuse.

Macros are embedded in an Excel sheet, do
not use VBA. Require different tools to
analyze.

oledump provides the plugin plugin_biff
for analyzing XLM macros.

XlmMacroDeobfuscator is another purpose-
built tool and includes macro emulation.

oledump PLUGIN_BIFF Use Cases

To view sheet visibility and name:

oledump --p plugin_biff –pluginoptions “-
x” maldoc.xls

XLMMacroDeobfuscator Use Cases

First command to run on a sample:

Xlmdeobfuscator -f maldoc.xls

Output includes entry point
worksheet/cell and emulated code.

onedump Use Cases

Dump tool for OneNote files.
 onedump [options] file

First command to run on a sample:

onedump malware.one

le: malware.one
 1: 0x00002530 powe …
 2: 0x00003490 .PNG …
 3: 0x00003840 .PNG …

 4: 0x0000f148 .Set …

The first column represents the index. The
second column the beginning of the stream
content. This is often the most
interesting column. The remaining columns
provide stream information.

In this example, streams 1 and 4 are the
most interesting. Stream 1 appears to be
PowerShell while stream 4 a batch script.

To extract content from a stream, use the
-d argument w/ the stream index.

oledump -s 1 -d malware.one

Suspicious PDF Strings

/JavasScript, /JS,
/AcroForm, /XFA

JavaScript code

/OpenAction, /AA Auto-execution

/URI
Resource access by
URI

/ObjStm Object stream

PDFID & PDF-Parser Use Cases

PDFID is a tool to test a PDF file.

PDFParser is a tool to parse PDF files.

First command to run:

pdfid.py file

Look for evidence of JavaScript in /JS or
/JavaScript. Then use pdf-parser.py.

Inspect objects:

pdf-parser.py file

Index for object will be displayed, can
use with -o argument. Look for command
execution and other suspicious behavior.

oledump Commands

Python tool designed by Didier Stevens to
analyze OLE (Compound Binary Files).

oledump.py [options] file

-m, -h Usage information

--version Version number

-m Print manual

-s [NUMBER]
Select item NUMBER for
dumping

-d Perform dump

-x Performs hex dump

-a Performs ASCII dump

-A ASCII dump w/ RLE

-S String dump

-T Head & Tail

-v VBA decompression

-r
Read raw file (use with
-v or -p)

-t ENCODING

String translation,
ENCODING is utf16, etc

-e
Extract OLE embedded
files

-i Print extra info

-p PLUGIN Loads PLUGIN

--pluginoptions
Options for the loaded
plugin

-q
Only print output from
plugins

-y YARA
YARA rule file or
directory

-D DECODER Decoders to load

-M Print metadata

-V Verbose output

-C CUT Cut data

-c
Extra data such as
hashes

--password=
Password to use on
input file

-j JSON output

Analyzing Malicious Documents – v1.0

Josh Stroschein | The Cyber Yeti @jstrosch

olevba Commands

Script to parse OLE and OOXML files to
extract and analyze VBA code. Also supports
XLM/Excel 4 macros.

olevba [options] file file2 …

-h Usage information

-r Finds files recursively

-z ZIP password

-a
Display only analysis,
not source code

-c
Display on VBA source
code

--decode
Attempt to deobfuscate
encoded strings

--reveal
Show VBA source code with
deobfuscated string
content

--deobf
Attempt to deobfuscate
VBA expressions

--show-pcode
Show disassembled
P-code

-t
Triage mode, display
summary table only

-d Detailed report

XLMMacroDeobfuscator Commands

Xlmdeobfuscator -f FILE [options]

-h Help

-f File path

-x
Extract cells only
without emulation

--start-point
Start interpretation
from a specific cell

-p Password for file

--timeout N
Emulation timeout in
seconds

PDFID Commands

PDFID is a tool to test a PDF file.

pdfid.py [options] file

--version Version number

-h Help

-s Scan given directory

-a Display all names

-f Force scan

-d
Disable JavaScript and
auto launch

-p PLUGIN Load PLUGIN

-v Verbose mode

-S SELECT Select expression

PDF-Parser Commands

pdf-parser.py [options] file

-s String to search

-r REFERENCE
ID of indirect
object being
referenced

-e ELEMENTS
Type of elements
to select

-o OBJECT
ID(s) of indirect
object being
referenced

onedump Commands

-h Help

-o Output to file

-s # Select item by #

-d Dump

-x Hexdump

Misc. Tools & Purpose

Remove password from protected VBA
project:

evilclippy -uu file

Extract objects embedded in an RTF file:

rtfobj.py malware.rtf

Inspect contents of OOXML file (ZIP):

zipdump.py file

Extract stream with index from file:

zipdump.py -s 2 -d file

Pretty-print XML from STDIN, consider
using | redirection:

xmldump.py pretty

ViperMonkey is a VBA emulation tool.

vmonkey file

msoffcrpyto-tool is used to
decrypt/encrypt office files. Will prompt
for password, otherwise define password
with -p argument.

msofficecrpto-tool encrypted decrypted

